

Preliminary

HCMOS 7 x 5mm 3.3V TCXO

Frea: 0.75 MHz to 250MHz

Features

XPRESSO Delivery

Frequency Resolution to six decimal places

-40 to +85°C operating temperatures

Tri-State Enable / Disable Feature

Industry Standard Package, Footprint & Pin-Out

Fully RoHS compliant

Serial ID with Comprehensive Traceability

Applications

- · Medical Monitoring and Measurement
- Telecom and Networking
- Test and Measurement Detection, Sensing, and Metering
- Military Communications
- Signal Processing and Data acquisition.

<u>Description</u>

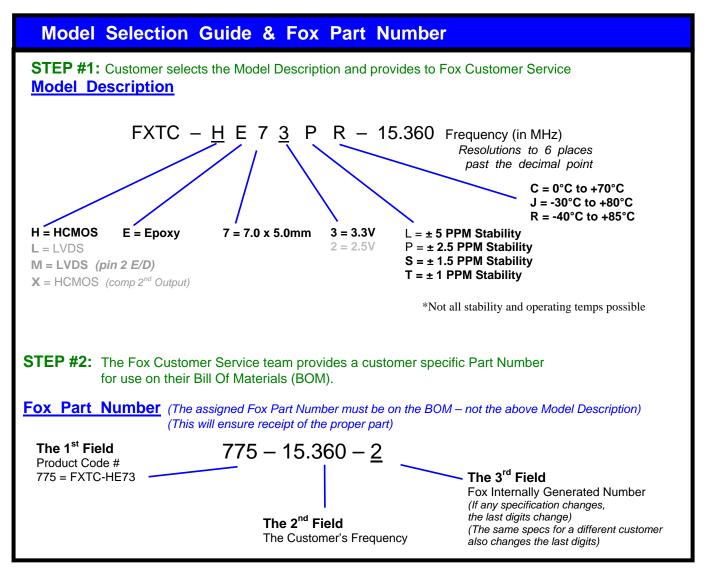
XPRESSO-TC is a breakthrough in configurable Frequency Control Solutions. XPRESSO-TC utilizes a family of proprietary ASICs, designed and developed by Fox, with a key focus on noise reduction technologies and tight temperature stability.

The 3rd order Delta Sigma Modulator reduces noise to the levels that are comparable to traditional Bulk Quartz and SAW oscillators.

With short lead-time, low cost, low noise, wide frequency range, and excellent temperature performance, XPRESSO-TC is an ideal choice over the conventional technologies.

Finished XPRESSO-TC parts are 100% final tested.

Contents


	page
Model Selection & Part Number Guide	2
Absolute Maximums	3
Electrical Characteristics	3
Output Wave Characteristics	4
Phase Noise	5
Jitter	5
Pin Assignment	6
Recommended Circuit	6
Reflow	6
Mechanical Drawing and Pad Layout	7
Tape and Reel Specification	8
Label	8
Traceability - LOT Number & Serial Identification	9
Environmental Test	10
Fox Contact Information	11

Page 1 of 1

2222

Preliminary

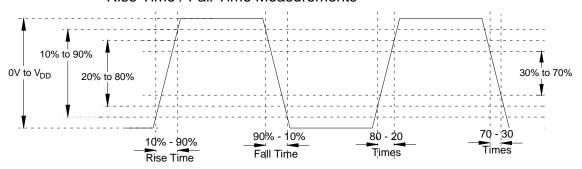
This example, FXTC-HE73PR-15.360 = Temperature Compensated, HCMOS Output, Epoxy, 7×5 mm Package, 3.3V, ± 2.5 PPM Stability, -40 to ± 85 °C Temperature Range, at 15.360 MHz

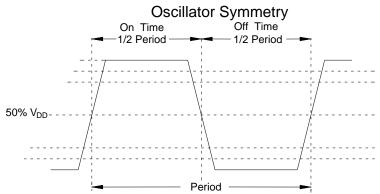
Preliminary

Absolute Maximum Ratings (Useful life may be impaired. For user guidelines only, not tested)				
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)	
Input Voltage	V_{DD}		-0.5V to +4.0V	
Operating Temperature	T _{AMAX}		–55°C to +105°C	
Storage Temperature	T _{STG}		–55°C to +125°C	
Junction Temperature			125°C	
ESD Sensitivity	HBM	Human Body Model	1 kV	

Electrical Characteristics			
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Frequency Range	Fo		0.75 to 250.000 MHz*
Initial Frequency Tolerance		Ta=25°C (after 2 reflows)	±2 PPM
Frequency Stability over Temp (ref 25C)		0°C to +70°C -30°C to +80°C -40°C to +85°C	±5, 2.5, 1.5, 1 PPM ±5, 2.5, 1.5 PPM ±5, 2.5 PPM
Frequency Stability Over Voltage Change		(VDD+-5%)	±0.5 PPM
Frequency Stability Over Load Change		(CL+-10%)	±0.2 PPM
Aging per Year			±1 PPM
Temperature Range	T _O	Standard operating Extended option	0°C to +70°C -30°C to +80°C -40°C to +85°C -55°C to +125°C
Supply Voltage	V_{DD}	Storage Standard	3.3 V ± 5%
Input Current	I _{DD}	15pF Load - All frequencies 0.75 ~ 20 MHz 20+ ~ 50 MHz 50+ ~ 130 MHz 130+ ~ 200 MHz 200+ ~ 250 MHz	40 mA 43 mA 55 mA 63 mA 68 mA
Output Load	HCMOS	Standard Optional To 125 MHz	15 pF 30 pF
Start-Up Time	Ts		10 mS
Output Enable / Disable Time			100 nS

^{*}Not all frequencies may be available.

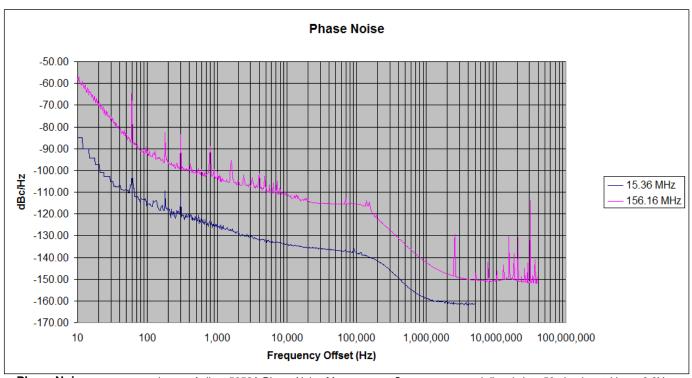



Preliminary

Output Wave Characteristics			
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Output LOW Voltage	V _{OL}	15pF Load - All frequencies 0.75 to 150 MHz 150+ to 250 MHz	10% V _{DD} 20% V _{DD}
Output HIGH Voltage	V _{OH}	15pF Load - All frequencies 0.75 to 150 MHz 150+ to 250 MHz	90% V _{DD} MIN 80% V _{DD} MIN
Output Symmetry (See Drawing Below)		15pF Load - All frequencies @ 50% V _{DD} Level	45% ~ 55%
Output Enable (PIN # 2) Voltage	V _{IH}		≥ 70% V _{DD}
Output Disable (PIN # 2) Voltage	V_{IL}		≤ 30% V _{DD}
Cycle Rise Time (See Drawing Below)	T _R	15pF Load - All frequencies 0.75 to 150 MHz 150+ to 250 MHz	3 nS _(10%-90%) 3 nS _(20%-80%)
Cycle Fall Time (See Drawing Below)	T _F	15pF Load - All frequencies 0.75 to 150 MHz 150+ to 250 MHz	3 nS _(90%~10%) 3 nS _(80%~20%)

If 30% to 70% times are used, Rise and Fall times change to 1.5 nS from 0.75 to 250MHz If 20% to 80% times are used, Rise and Fall times change to 2 nS from 0.75 to 150MHz

Rise Time / Fall Time Measurements



Ideally, Symmetry should be 50/50 -- Other expressions are 45/55 or 55/45

Preliminary

Phase Noise

<u>Phase Noise</u> was measured on an Agilent 5052A Phase Noise Measurement System; measured directly into 50 ohm input; $V_{DD} = 3.3V$. 15.36MHz only to 5MHz offset due to Equipment Limitation.

Jitter is frequency dependent. Below are typical measured values at select frequencies.

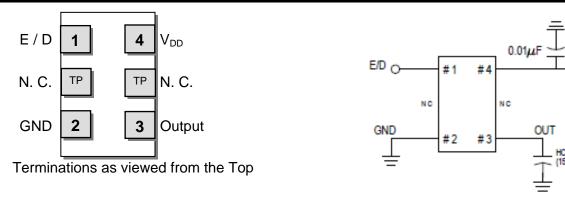
Phase Jitter & Time Interval Error (TIE)			
Frequency	Phase Jitter 12kHz to 20MHz (Fo = 156.16 MHz) 12kHz to 5MHz (Fo = 15.36 MHz)	TIE (Sigma of Jitter Distribution)	Units
15.36 MHz	0.94	3.5	pS RMS
156.16 MHz	1.10	3.9	pS RMS

<u>Phase Jitter</u> is integrated from Agilent 5052A Phase Noise Measurement System; measured directly into 50 ohm input; $V_{DD} = 3.3V$. <u>TIE</u> was measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software; $V_{DD} = 3.3V$. Per **MJSQ** spec (Methodologies for Jitter and Signal Quality specifications)

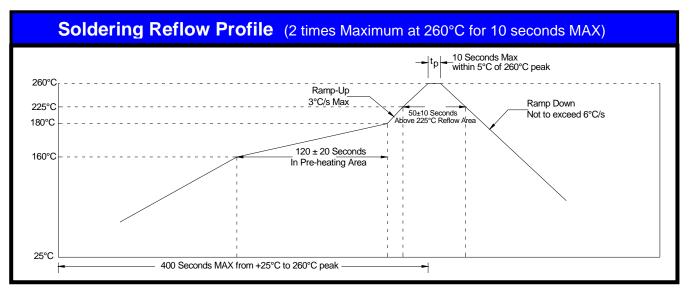
Random & Deterministic Jitter Composition				
Frequency	Random (Rj)	Deterministic (Dj)	Total Jitter (Tj) (14 x Rj) + Dj	
15.36 MHz	1.68	8.7	32.7	
156.16 MHz	1.47	10.3	31.3	

Rj and Dj, measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software.

Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)

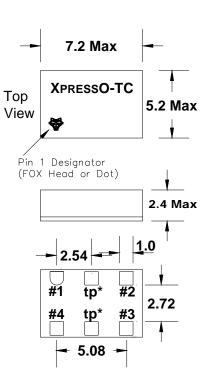


Preliminary

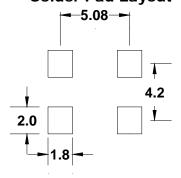

Pin Description and Recommended Circuit			
Pin #	Name	Туре	Function
1	E/D ¹	Control	Enable / Disable Control of Output (0 = Disabled)
2	GND	Ground	Electrical Ground for V _{DD}
3	Output	Output	HCMOS Oscillator Output
4	V_{DD}^{2}	Power	Power Supply Source Voltage

NOTES:

- Includes pull-up resistor to V_{DD} to provide output when the pin (1) is No Connect.
- Installation should include a 0.01μF bypass capacitor placed between V_{DD} (Pin 4) and GND (Pin 2) to minimize power supply line noise.


Enable / Disable Control	
Pin # 1 (state)	Output (Pin # 3)
OPEN (No Connection)	ACTIVE Output
"1" Level $V_{IH} \ge 70\% V_{DD}$	ACTIVE Output
"0" Level $V_{IL} \le 30\% V_{DD}$	High Impedance

Preliminary


& Pad Layout **Mechanical Dimensional** Drawing

Actual part marking is depicted.

See Traceability (pg. 9) for more information

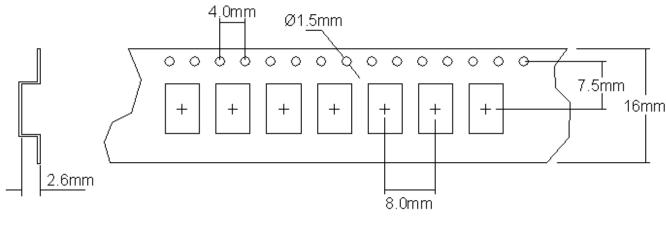
Recommended **Solder Pad Layout**

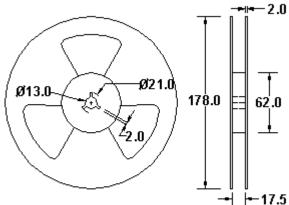
Note: XPRESSO HCMOS TCXOs are designed to fit on industry standard, 4 pad, layouts

Pin Connections

#1) OE #3 Output #4 VDD

#2) GND


* tp = test points and are no connect.


Drawing is for reference to critical specifications defined by size measurements. Certain non-critical visual attributes, such as side castellations, reference pin shape, etc. may vary

Preliminary

Tape and Reel Dimensions (mm)

Std. reel qtty. - 500 pcs.

Labeling (Reels and smaller packaging are labeled with the below) [Subject to Review]

775-15.360-2 Fox Part Number: 775-15.36-2 FÖX Xpress0 ® Quantity: 500 pieces Covered by one or more of listed U.S. Patents: 6,664,860, 5,960,403 5,960,405 5,952,890 6,188,290 Description: FXTC-HE73PR-15.360 Foreign Patents: China ZL 98802217.6 FXTC-HE73PR-15.360 DATE CODE: 0745 R.S.A. 98/0866, ROC 120851, **Date Code** 0745 Pb-Free RoHS Compliant Singapore 67081; 67082, (YYWW 2007 45th wk) EP 0958652 Hong Kong Malaysia My-118540-A Category (e4) LOT # 24435 Philippines Patent: 1-1998-00 US and Foreign Patents Pending

Xpress0 0 is a Registered Trademark of Fox Electronics

Preliminary

Traceability - LOT Number & Serial Identification

LOT Number

The LOT Number has direct ties to the customer purchase order. The LOT Number is marked on the "Reel" label, and also stored internally on non-volatile memory inside the XPRESSO-TC part. XPRESSO-TC parts that are shipped Tape and Reel, are also placed in an Electro Static Discharge (ESD) bag and will have the LOT Number labeled on the exterior of the ESD bag.

It is recommended that the XPRESSO-TC parts remain in this ESD bag during storage for protection and identification.

If the parts become separated from the label showing the LOT Number, it can be retrieved from inside one of the parts, and the information that can be obtained is listed below:

- Customer Purchase Order Number
- Internal Fox Sales Order Number
- Dates that the XPRESSO-TC part was shipped from the factory
- The assigned customer part number
- The specification that the part was designed for

Serial Identification

The Serial ID is the individualized information about the configuration of that particular XpressO-TC part. The Serial ID is unique for each and every XPRESSO-TC -TC part, and can be read by special Fox equipment.

With the Serial ID, the below information can be obtained about that individual, XPRESSO-TC part:

- Equipment that the XPRESSO-TC part was configured on
- Raw material used to configure the XPRESSO-TC part
- Traceability of the raw material back to the foundries manufacturing lot
- Date and Time that the part was configured
- Any optimized electrical parameters based on customer specifications
- Electrical testing of the actual completed part
- Human resource that was monitoring the configuration of the part

Fox has equipment placed at key Fox locations World Wide to read the Lot Identification and Serial Number of any XPRESSO-TC part produced and can then obtain the information from above within 24 hour

Preliminary

Environmental Testing

Parameter	Test Method
Mechanical Shock	MIL-STD-202, Method 213
	Half sine wave (Figure 213-1)
	Test condition C (100g, 6mS)
Mechanical Vibration	MIL-STD-202, Method 204
	Freq.range: 10~2000Hz
	Peak to peak amplitude:1.52mm.
	Peak acceleration:5G (49m/s2)
	3 direction(X, Y,Z),each 20min,Total 12cycles
High Temperature Burn-in	Under Power @ 125°C for 2000 Hours
Temperature Cycle	Power off
	-55°C ~ +125°C
	15 minutes each temp
	100 cycles
Humidity	MIL-STD-202, Method 103B, Test condition B.
	Power off
	Relative Humidity = 90 to 95%.
	Ta = 40C.
	Duration = 96 hours.

Preliminary

Notes:

Patent Numbers: US 6,664,860, US 5,960,403, US 5,952,890; US 5,960,405; US 6,188,290; Foreign Patents: R.S.A. 98/0866, R.O.C. 120851; Singapore 67081, 67082; EP 0958652 China ZL 98802217.6, Malaysia MY-118540-A, Philippines 1-1998-000245, Hong Kong #HK1026079, Mexico #232179 US and Foreign Patents Pending XpressO[™] Fox Electronics

Contact Information

Email: www.foxonline.com/email.htm

(USA) Worldwide Headquarters Tel: 888-GET-2-FOX Outside US: +1.239.693.0099 Fax:+1.239.693.1554

Fox Asia Tel: +852.2854.4285 Fax:+81.3.3377.5221 Fox Japan Tel:+81.3.3374.2079 Fax: +81.3.3377.5221 Fox MEA Tel: +44 1283 568153 Fox Canada Tel: North America 239.464.2501 Outside US: +1.239.693.0099

All specifications subject to change without notice.

