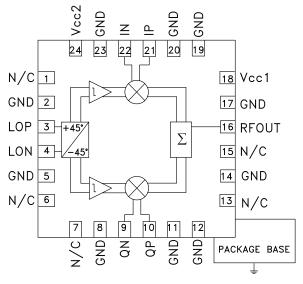


ROHS V


v04.01213

Typical Applications

The HMC696LP4E is Ideal for:

- GMSK, QPSK, QAM, SSB Modulators
- Cellular/3G and WiMAX/4G
- Software Defined Radio
- Multi-Band Transmitters
- Test Equipment

Functional Diagram

SiGe WIDEBAND DIRECT QUADRATURE MODULATOR, 20 - 2700 MHz

Features

Very Low Noise Floor, -162 dBm/Hz Excellent Carrier & Sideband Suppression Very High Linearity, +23.7 dBm OIP3 High Output Power, +8.5 dBm Output P1dB High Modulation Accuracy 24 Lead 4x4 mm QFN Package: 16 mm²

General Description

The HMC696LP4E is a low noise, high linearity Direct Quadrature Modulator RFIC which is ideal for digital modulation applications from 0.02 to 2.7 GHz including software defined radio and multi-band transmitters. Housed in a compact 4x4 mm (LP4) SMT QFN package, the RFIC requires minimal external components & provides a low cost alternative to more complicated double upconversion architectures. The RF output port is single-ended and matched to 50 Ohms with no external components. The LO requires 0 to +10 dBm and can be driven in either differential or single-ended mode. This device is optimized for a +5V supply, and offers improved carrier feedthrough and sideband suppression characteristics. For higher frequency applications, the HMC697LP4E Direct Modulator covers 450 - 4000 MHz.

Electrical Specifications, See Test Conditions on following page herein.

-								
Parameter	Тур.	Тур.	Тур.	Тур.	Тур.	Тур.	Тур.	Units
Frequency Range, RF	20 - 40	40 - 100	100 - 450	450 - 960	960 - 1700	1700 - 2200	2200 - 2700	MHz
Output P1dB	7	8	8	8	7	6	5	dBm
Output Noise Floor		-160	-162	-163	-162	-162	-161	dBm/Hz
Output IP3	21	24	24	23	21	19	17	dBm
Output Power	0	1	1	0	-1	-2	-3	dBm
Carrier Feedthrough (uncalibrated)	-42	-42	-42	-42	-43	-45	-42	dBm
Sideband Suppression (uncalibrated)	-29	-40	-54	-42	-43	-42	-30	dBc
LO Port Return Loss	9	12	15	15	11	7	5	dB
RF Port Return Loss	29	28	29	31	30	24	20	dB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC696* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

HMC696LP4E Evaluation Board

DOCUMENTATION

Data Sheet

HMC696 Data Sheet

REFERENCE MATERIALS

Quality Documentation

• Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)

DESIGN RESOURCES

- HMC696 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC696 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

RoHS V

SiGe WIDEBAND DIRECT QUADRATURE MODULATOR, 20 - 2700 MHz

Electrical Specifications, (continued)

Parameter	Conditions	Min.	Тур.	Max.	Units	
RF Output	RF Output					
RF Frequency Range		20		2700	MHz	
RF Return Loss			27		dB	
LO Input						
LO Frequency Range		20		2700	MHz	
LO Input Power			0	10	dBm	
LO Port Return Loss			10		dB	
Baseband Input Port						
Baseband Input DC Voltage (Vbbdc)			1.5	1.7	V	
Baseband Input DC Bias Current (Ibbdc)	Single-ended.		60		μA	
Single-ended Baseband Input Capacitance	De-embed to the lead of the device.		4.5		pF	
DC Power Requirements See Test Conditions Below						
Supply Voltage (Vcc1, Vcc2)		4.5	5	5.5	V	
Supply Current (Icc1 + Icc2)		140	160	180	mA	

Test Conditions: Unless Otherwise Specified, the Following Test Conditions Were Used

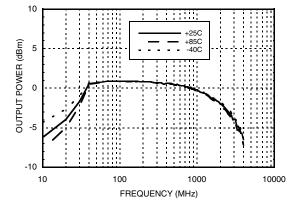
v04.1213

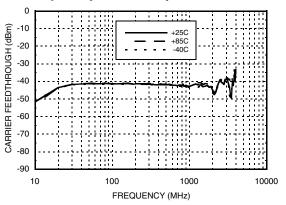
Parameter		Condition	
Temperature	+25 °C		
Baseband Input Frequency	200 kHz		
Baseband Input DC Voltage (Vbbdc)		+1.5V	
Baseband Input AC Voltage	(Peak to Peak Differential, I and Q)	+1.4V	
Baseband Input AC Voltage for OIP3 Measurement	(Peak to Peak Differential, I and Q)	700 mV per tone @ 150 & 250 kHz	
Frequency Offset for Output Noise Measurements		30 MHz	
Supply (Vcc1, Vcc2)		+5V	
LO Input Power		0 dBm	
LO Input Mode		Single-Ended through LOP	
Mounting Configuration		Refer to HMC696LP4E Application Schematic Herein	
Sideband & Carrier Feedthrough		Uncalibrated	

Calibrated vs. Uncalibrated Test Results

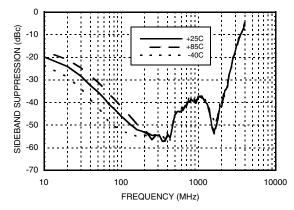
During the Uncalibrated Sideband and Carrier Suppression tests, care is taken to ensure that the I/Q signal paths from the Vector Signal Generator (VSG) to the Device Under Test (DUT) are equal. The "Uncalibrated, +25 °C" Sideband and Carrier Suppression plots were measured at room temperature, while the "Uncalibrated, over Temperature" Sideband and Carrier Suppression plots represent the worst case uncalibrated suppression levels measured at T= -40 °C, +25 °C, and +85 °C.

The "Calibrated, + 25 °C" Sideband Suppression data was plotted after a manual adjustment of the I/Q amplitude balance and I/Q phase offset (skew) at +25 °C, and at each LO input power level. The +25 °C adjustment settings were held constant during tests over temperature. The "Calibrated, over Temperature" plots represent the worst case calibrated Sideband Suppression levels at T= -40 °C, +25 °C, and +85 °C.


The "Calibrated, +25 °C" Carrier Suppression data was plotted after a manual adjustment of the Ip/In & Qp/Qn DC offsets at +25 °C, and at each LO input power level. The +25 °C adjustment settings were held constant during tests over temperature. The "Calibrated, over Temperature" plots represent the worst case Carrier Suppression levels measured at T= -40 °C, +25 °C, and +85 °C.

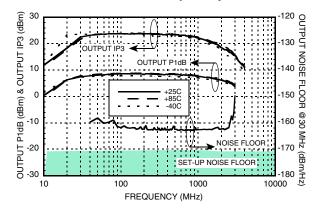


v04.1213

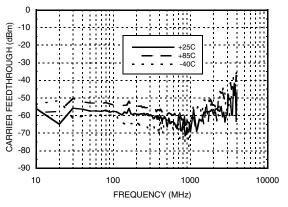

Wideband Performance vs. Frequency

Uncalibrated Carrier Feedthrough ^[1] vs. Frequency Over Temperature

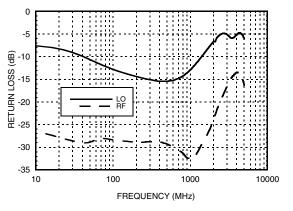
Sideband Suppression vs. Frequency



[1] See note titled "Calibrated vs. Uncalibrated test results" herein.

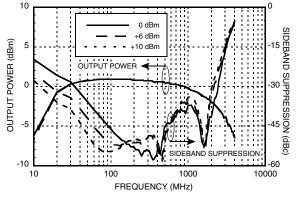

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

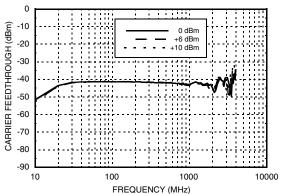
SiGe WIDEBAND DIRECT QUADRATURE MODULATOR, 20 - 2700 MHz


Output IP3, P1dB & Noise Floor @ 30 MHz Offset vs. Frequency

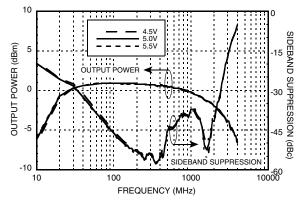
Calibrated Carrier Feedthrough ^[1] vs. Frequency Over Temperature

Return Loss vs. Frequency



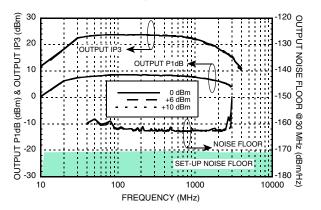

SiGe WIDEBAND DIRECT QUADRATURE MODULATOR, 20 - 2700 MHz

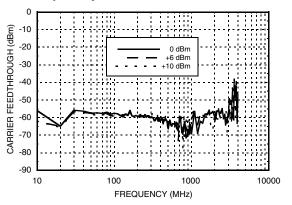
Wideband Performance vs. Frequency Over LO Power



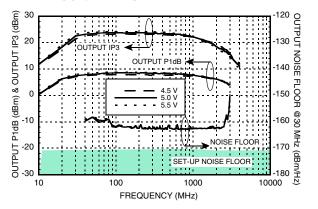
v04.1213

Uncalibrated Carrier Feedthrough ^[1] vs. Frequency Over LO Power


Wideband Performance vs. Frequency Over Supply Voltage

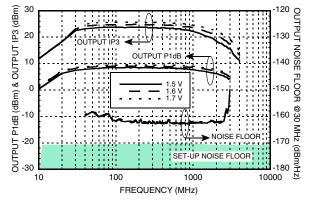

[1] See note titled "Calibrated vs. Uncalibrated test results" herein.

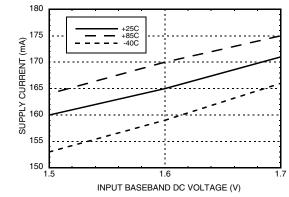
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


Output IP3, P1dB & Noise Floor @ 30 MHz Offset vs. Frequency Over LO Power

Calibrated Carrier Feedthrough ^[1] vs. Frequency Over LO Power

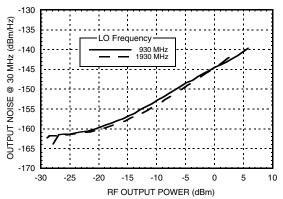
Output IP3, P1dB & Noise Floor @ 30 MHz Offset vs. Frequency Over Supply Voltage




v04.1213

ROHS V

Output IP3, P1dB & Noise Floor @ 30 MHz Offset vs. Frequency Over Input Baseband DC Voltage



Supply Current vs. Input Baseband DC Voltage

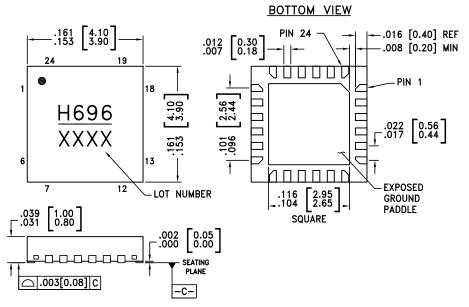
SiGe WIDEBAND DIRECT QUADRATURE MODULATOR, 20 - 2700 MHz

Output Noise @ 30 MHz Offset vs. RF Output Power

Absolute Maximum Ratings

Vcc1, Vcc2	+6V
LO Input Power	+18 dBm
Baseband Input Voltage (AC + DC) (Reference to GND)	0V to +2.8V
Junction Temperature	150 °C
Continuous Pdiss (T = 85°C) (Derate 30 mW/°C above 85°C)	1.8 Watts
Thermal Resistance (R _{th}) (junction to ground paddle)	34 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS



v04.1213

SiGe WIDEBAND DIRECT QUADRATURE MODULATOR, 20 - 2700 MHz

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC696LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H696</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 $^\circ\text{C}$

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

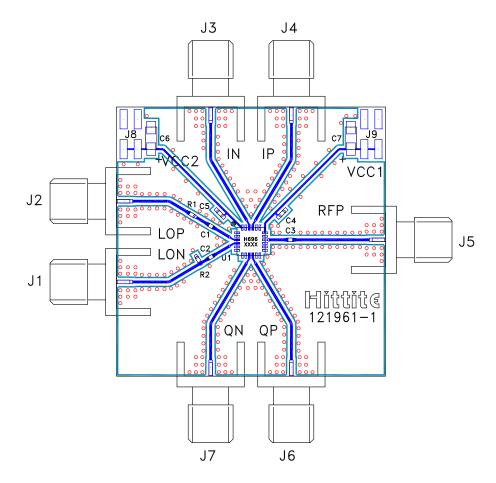
v04.1213

HMC696LP4E

SiGe WIDEBAND DIRECT QUADRATURE MODULATOR, 20 - 2700 MHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 6, 7, 13, 15	N/C	Not connected.	
2, 5, 8, 11, 12, 14, 17, 19, 20, 23	GND	These pins and the ground paddle should be connected to a high quality RF/DC ground.	
3, 4	LOP, LON	LO inputs. Need DC decoupling capacitors. The ports could be driven single ended or differentially.	
9, 10	QN, QP	Q channel differential baseband input. These high impedance ports should be biased around 1.5V DC. Nominal recommended baseband input is around 700 mV pp differential.	
16	RFOUT	DC coupled and matched to 50 Ohms, output requires blocking capacitor.	O Vcc 1
18	Vcc1	Supply voltage for the mixer and output stages 74mA @ +5V.	
21, 22	IP, IN	I channel differential baseband input. These high impedance ports should be at the same bias voltage (VbbDC) as QN & QP.	
24	Vcc2	Supply voltage for the LO stage 85mA @ +5V.	Vcc2O



v04.1213

SiGe WIDEBAND DIRECT QUADRATURE MODULATOR, 20 - 2700 MHz

Evaluation PCB

List of Materials for Evaluation PCB 121963 [1]

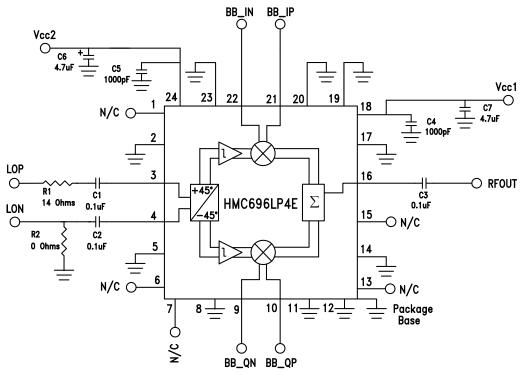
Item	Description	
J1 - J7	PCB Mount SMA Connector	
J8, J9	DC Molex Connector	
C1 - C3	0.1 μF Chip Capacitor, 0402 Pkg.	
C4, C5	1000 pF Chip Capacitor, 0402 Pkg.	
C6, C7	4.7 μF, Case A, Tantalum	
R1	14 Ohm Resistor, 0402 Pkg.	
R2	0 Ohm Resistor, 0402 Pkg.	
U1	HMC696LP4E Modulator	
PCB ^[2]	121961 Eval Board	

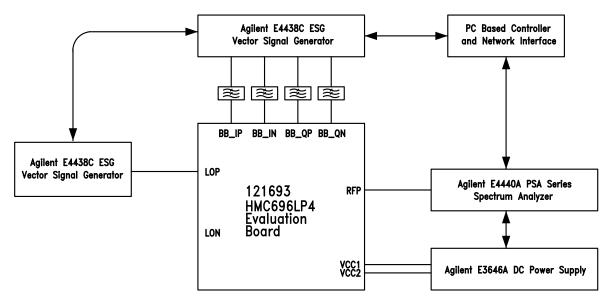
[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. MODULATORS - DIRECT QUADRATURE - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




SiGe WIDEBAND DIRECT QUADRATURE MODULATOR, 20 - 2700 MHz

Application & Evaluation PCB Schematic

v04.1213

Characterization Set-up

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.1213

SiGe WIDEBAND DIRECT QUADRATURE MODULATOR, 20 - 2700 MHz

Notes:

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.