

Typical Applications

Functional Diagram

The HMC288MS8 / HMC288MS8E is ideal for:

v01.0705

Cellular

• PCS, ISM, MMDS

WLL applications

2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

HMC288MS8 / 288MS8E

2 dB LSB Steps to 14 dB Single Positive Control Per BIT Monotonic: ±03 dB Bit Error Typical Miniature MSOP-8 Package, 14.8mm²

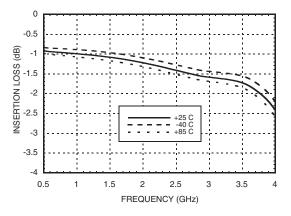
General Description

Features

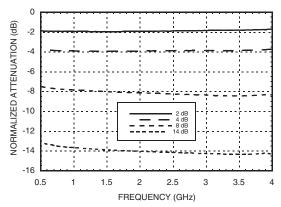
The HMC288MS8 & HMC288MS8E are broadband 3-bit positive control GaAs IC digital attenuators in 8 lead MSOP surface mount plastic packages. Covering 0.7 to 3.7 GHz, the insertion loss is typically less than 1.2 to 1.8 dB. The attenuator bit values are 2 (LSB), 4, and 8 dB for a total attenuation of 14 dB. Accuracy is excellent at \pm 0.3 dB typical with an IIP3 of up to +51 dBm. Three bit control voltage inputs, toggled between 0 and +3 to +5V, are used to select each attenuation state at less than 50 uA each. A single Vdd bias of +3 to +5V applied through an external 5K Ohm resistor is required while occupying less than 14.8 mm².

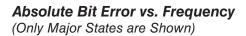
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated)

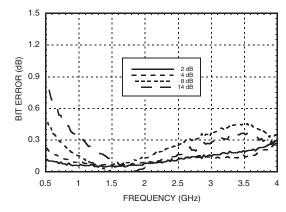
Parameter		Frequency	Min.	Typical	Max.	Units
Insertion Loss		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 3.7 GHz		1.0 1.3 1.5 1.7	1.4 1.7 2.0 2.3	dB dB dB dB
Attenuation Range		0.7 - 3.7 GHz		14		dB
Return Loss (RF1 & RF2, All Atten. States)		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 3.7 GHz	14 11 10 9	17 15 14 12		dB dB dB dB
Attenuation Accuracy: (Referenced to Insertion Loss)						
All Attenuation States All Attenuation States All Attenuation States All Attenuation States		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 3.7 GHz	\pm 0.2 + 3% of Atten. Setting Max di \pm 0.3 + 3% of Atten. Setting Max di		dB dB dB dB	
	5V 3V	0.7 - 3.7 GHz		25 22		dBm dBm
	5V 3V	0.7 - 3.7 GHz		51 47		dBm dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		0.7 - 3.7 GHz		560 600		ns ns


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

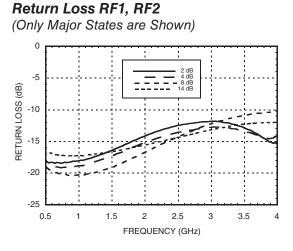
v01.0705

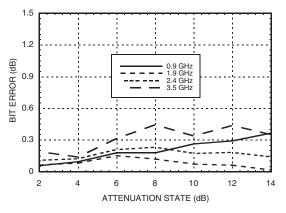



Insertion Loss

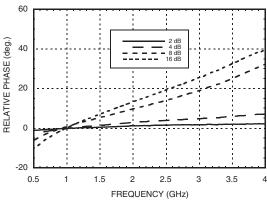


Normalized Attenuation


(Only Major States are Shown)



2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz



Absolute Bit Error vs. Attenuation State

Relative Phase vs. Frequency

(Only Major States are Shown)

Note: All Data Typical Over Voltage (+3V to +5V) & Temperature (-40 to +85 deg. C.).

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

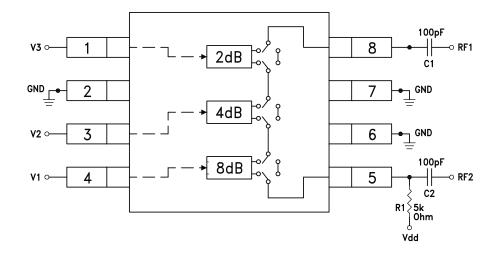
v01.0705

ROHSV EARTH FRIENDLY

Truth Table

Con	trol Voltage Ir	Attenuation	
V1 8 dB	V2 4 dB	V3 2 dB	Setting RF1 - RF2
High	High	High	Reference I.L.
High	High	Low	2 dB
High	Low	High	4 dB
Low	High	High	8 dB
Low	Low	Low	14 dB Max. Atten.
Any combination of the above states will provide an attenuation			

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.


Application Circuit

HMC288MS8 / 288MS8E

2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Control & Bias Voltages

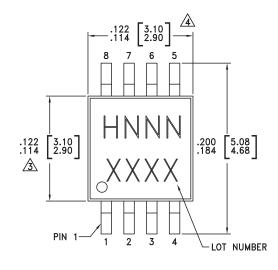
State	Bias Condition	
Low	0 to +0.2V @ 20 uA Max.	
High	gh Vdd ± 0.2V @ 50 uA Max	
Note: Vdd = $+3V$ to $5V \pm 0.2V$		

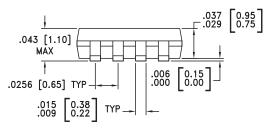
DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = $C2 = 100 \sim 300 \text{ pF}$ to allow lowest customer specific frequency to pass with minimal loss. R1 = 5K Ohm is required to supply voltage to the circuit throught either PIN 5 or PIN 8.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0705

2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz


Absolute Maximum Ratings


Control Voltage (V1, V2, V3)	Vdd + 0.5 Vdc
Bias Voltage (Vdd)	+8.0 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power (0.7 - 4 GHz)	+28 dBm

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

 $\begin{array}{c} 0^{\circ} \\ 0.031 \\ 0.40 \\$

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY

2. DIMENSIONS ARE IN INCHES [MILLIMETERS]

▲ DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

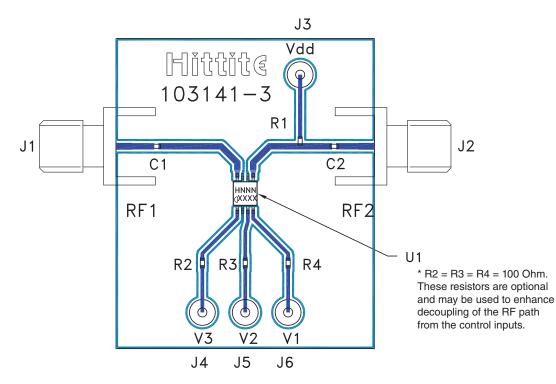
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC288MS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H288 XXXX
HMC288MS8E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H288</u> XXXX

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


ATTENUATOR, 0.7 - 3.7 GHz

2 dB LSB GaAs MMIC 3-BIT DIGITAL

v01.0705

Evaluation Circuit Board

List of Materials for Evaluation PCB 103143 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J6	DC Pin
R1	5k Ohm Resistor, 0402 Chip
R2, R3, R4	100 Ohm Resistor, 0402 Chip
C1, C2	0402 Chip Capacitor, Select for Lowest Fre- quency of Operation
U1	HMC288MS8 / HMC288MS8E Digital Attenuator
PCB [2]	103141 Evaluation PCB 1.5" x 1.5"

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Hittite Microwave Corporation upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0705

Notes:

2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.